NanoViricides Announces Renewal of DengueCide™ Evaluation Contract with the Professor Eva Harris Laboratory at the University of California, Berkeley

WEST HAVEN, CONNECTICUT -- Monday, November 4th, 2013 -- NanoViricides, Inc. (NYSE MKT: NNVC) (the "Company"), announced today that theDengueCide evaluation contract has been renewed with Dr. Eva Harris’ Laboratory at the University of California, Berkeley, School of Public Health, Division of Infectious Diseases and Vaccinology.

Dr. Harris is one of the world’s leading experts in dengue. This contract renewal will allow the Company to continue its drug development program for the treatment of dengue.

There is currently neither an effective drug treatment nor a vaccine for dengue virus infection. The FDA has recently awarded orphan drug status to DengueCide and the Company is pursuing similar status with the European Medicines Agency (EMA). The orphan designation enables the Company to undertake rapid drug development following its influenza drug candidates.

“Our relationship with Dr. Harris and her colleagues is critically important to our development program for DengueCide,” said Eugene Seymour, MD, MPH, CEO of NanoViricides. Dr. Harris has an excellent mouse model of dengue virus infection and disease that the Company used previously to evaluate its anti-dengue agents. In those studies, the nanoviricides® have shown high effectiveness. In Prof. Harris’ model of dengue vascular leak, dengue virus infection of the laboratory mouse strain, AG129, is 100% fatal when the mice are untreated. In contrast, in the same study, animals treated with one of NanoViricides' anti-dengue agents achieved an unprecedented 50% survival rate.

Dengue is receiving significant international attention, as it threatens over 40% of the world population, according to the WHO. Dengue cases with significant fatality rates have started rising in tropical countries this year already, as demonstrated by reports from India, Sri Lanka, Indonesia, Philippines, Cambodia, and Colombia, among others. Dengue is endemic in Asia, Mexico, the Caribbean, Central America and many countries in South America. Dengue virus infections have occurred in the southern US states, including a recent outbreak in Key West and Miami. Travel leads to sporadic cases of dengue in the US.

Dengue virus, a member of the Flaviviridae family of viruses that includes West Nile and Hepatitis C viruses, is transmitted to humans via female Aedes mosquitoes. There are 4 different serotypes of dengue virus that infect humans. When a person is infected with dengue virus for the first time, the disease may not be severe, inducing fever, muscle and joint pain, and rash. When the same person is later infected by a different dengue virus serotype, a more severe disease may develop (Dengue Hemorrhagic Fever/Dengue Shock Syndrome (DHF/DSS)). This DHF/DSS may be caused by antibodies and/or cross-reactive T cells produced during the first infection. According to the WHO, fatality rates of DHF/DSS can exceed 20%.

About Dr. Eva Harris’ Laboratory at the University of California, Berkeley

The Harris Laboratory in the Division of Infectious Diseases in the School of Public Health at the University of California, Berkeley (http://www.berkeley.edu) has developed a multidisciplinary approach to study the molecular virology, pathogenesis, immunology, and epidemiology of dengue, the most prevalent mosquito-borne viral disease in humans. Their work addresses viral and host factors that modulate disease severity as well as immune correlates of protection. One major research focus has been the development of a mouse model to study viral tropism and pathogenesis, investigate the immune response to dengue virus infection, and evaluate candidate anti-viral therapeutics. Dr. Harris’ field work focuses on laboratory-based and epidemiological studies of dengue in endemic Latin American countries, particularly in Nicaragua, where ongoing projects include clinical and biological studies of severe dengue, a pediatric cohort study of dengue and influenza transmission in Managua, and a project on evidence-based, community-derived interventions for prevention of dengue via control of its mosquito vector.The market size for anti-influenza drugs is currently estimated to be in several billions of dollars worldwide. The Company believes that if its FluCide® drug becomes available, the influenza drug market size could become substantially larger. It is well known that when an effective treatment for a disease becomes available, the market size explodes and the novel effective treatment captures a substantial portion of the market.

About NanoViricides
NanoViricides, Inc. (www.nanoviricides.com) is a development stage company that is creating special purpose nanomaterials for antiviral therapy. The Company's novel nanoviricide® class of drug candidates are designed to specifically attack enveloped virus particles and to dismantle them. The Company is developing drugs against a number of viral diseases including H1N1 swine flu, H5N1 bird flu, seasonal Influenza, HIV, oral and genital Herpes, viral diseases of the eye including EKC and herpes keratitis, Hepatitis C, Rabies, Dengue fever, and Ebola virus, among others.

This press release contains forward-looking statements that reflect the Company's current expectation regarding future events. Actual events could differ materially and substantially from those projected herein and depend on a number of factors. Certain statements in this release, and other written or oral statements made by NanoViricides, Inc. are "forward-looking statements" within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934. You should not place undue reliance on forward-looking statements since they involve known and unknown risks, uncertainties and other factors which are, in some cases, beyond the Company's control and which could, and likely will, materially affect actual results, levels of activity, performance or achievements. The Company assumes no obligation to publicly update or revise these forward-looking statements for any reason, or to update the reasons actual results could differ materially from those anticipated in these forward-looking statements, even if new information becomes available in the future. Important factors that could cause actual results to differ materially from the company's expectations include, but are not limited to, those factors that are disclosed under the heading "Risk Factors" and elsewhere in documents filed by the company from time to time with the United States Securities and Exchange Commission and other regulatory authorities.  Although it is not possible to predict or identify all such factors, they may include the following: demonstration and proof of principle in preclinical trials that a nanoviricide is safe and effective; successful development of our product candidates; our ability to seek and obtain regulatory approvals, including with respect to the indications we are seeking; the successful commercialization of our product candidates; and market acceptance of our products.



Contact:
NanoViricides, Inc.
Amanda Schuon, 310-550-7200
info@nanoviricides.com